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Introduction

ProtonMail is a secure email system servicing over 1 million customers around
the world, ranging from private individuals to large enterprises. It aims to
provide a much higher level of security than traditional email services without
adversely impacting usability.

To achieve such security, ProtonMail conservatively assumes that all mail
servers may eventually be compromised. Thus, ProtonMail uses end-to-end
encryption to ensure that plaintext email data is never sent to the server. If
a server only contains encrypted messages, then the risks of a central server
breach are mitigated.

ProtonMail’s security extends beyond just strong encryption. We have seen
time and time again that the human factor is the weak link in enterprise security.
End user passwords can frequently be compromised by insecure connections,
phishing, or malware. ProtonMail takes several additional steps to guard against
this. First, ProtonMail uses strong authentication which makes most brute
force or dictionary attacks impossible – even if an attacker has compromised
the connection between client and server. Second, ProtonMail’s encryption
protocols ensure that a single compromised account does not endanger other
accounts.

We firmly believe that the most secure system is one that users will actually
use. Thus, ProtonMail was designed from the ground up with a strong emphasis
on usability. To accomplish this, we built the first encrypted email system where
the encryption is entirely automatic and invisible to the end user. For usabil-
ity reasons, we retain compatibility with legacy email protocols such as IMAP
and SMTP so ProtonMail accounts can be accessed from existing email clients
and can seamlessly communicate with non-ProtonMail email accounts. How-
ever, because of the inherent insecurity of IMAP and SMTP, ProtonMail uses
a bridge service to maintain encryption and authentication without sacrificing
IMAP/SMTP support.

While ProtonMail can be deployed either in the cloud or on an organiza-
tion’s premises, we are firm believers in the cloud as the future of all enterprise
software. ProtonMail’s cloud offerings provide the best of both worlds. Orga-
nizations can benefit from the security and reliability advantages of the cloud,
while retaining data control and data privacy due to the end-to-end encryp-
tion. Further, the economies of scale of the cloud imply a much lower cost of
ownership for email infrastructure. For these reasons, ProtonMail is primarily
deployed in the cloud.

The goal of this document is to provide a more detailed look at the tech-
nology behind ProtonMail. The first sections cover the technical details for
ProtonMail’s authentication and encryption technology. The next sections dis-
cuss the ProtonMail’s extensive administrative tools and how key management
is handled within an organization, followed by details of how ProtonMail se-
curely supports legacy email clients. Lastly, an overview of ProtonMail’s secure
cloud infrastructure is provided, with a discussion of the technologies we utilize
to ensure maximum data uptime and availability.
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Authentication

ProtonMail users enter a user-chosen password on each login, but while Pro-
tonMail’s backend is responsible for validating and resetting the password, the
password cannot be derived by either ProtonMail or an attacker with access
to the network. This is achieved with the Secure Remote Password protocol,
which as detailed below, conveys a zero-knowledge password proof from the
user to the server. The security granted by this protocol extends to the user’s
private keys, which are encrypted with a salted hash of their password before
being sent to the server. For additional security, users also have the option of
enabling two-factor authentication.

Issues with Traditional Password Authentication

Most online services send the cleartext password or password equivalent to the
server on every login. If the server is compromised, whether from malicious
code injected onto the server or due to a memory exposure such as in the recent
Heartbleed vulnerability, user passwords or password-equivalents can be leaked
no matter how they were salted and hashed.

Moreover, if the encrypted TLS layer of the connection to the server is bro-
ken, passwords can simply be read from network traffic by any intermediary
system between the client and server. This possibility is not as unreasonable or
unlikely as it may seem. There have numerous incidents of certificate authorities
issuing fraudulent certificates or computers being changed to trust insecure au-
thorities. In 2001, VeriSign issued false Microsoft certificates; in 2011, Comodo
and DigiNotar issued false certificates to several websites, including Google and
Mozilla; in 2012 it came to light that Trustwave had created a subordinate root
certificate capable of attacking a connection to any website; in 2015 it was re-
vealed that Lenovo laptops were shipped with Superfish, software that, among
other things, caused the system to trust a root certificate with a publicly known
private key. This problem is exacerbated by the certainty that a state actor
could force a certificate authority to issue fraudulent certificates.

In contrast, the Secure Remote Password protocol [11] promises theoretically
optimal security. When using SRP, even an attacker who can arbitrarily read,
modify, delay, destroy, repeat, or fabricate messages between ProtonMail and a
legitimate user in an undetectable fashion is limited to checking only a single
password guess per login attempt, a task which could be done just by trying to
log in directly. Even if a server is compromised and acts maliciously, password-
equivalent information is never revealed. This is all done without permanent
private keys: all secret information is derived from the user’s password.

The Secure Remote Password Protocol (Version 6a)

The Secure Remote Password (SRP) protocol can be viewed as a variation of
the more well-known and widely deployed Diffie-Hellman key exchange. As in
Diffie-Hellman, SRP’s security in the face of eavesdroppers and other attackers
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Client Server

Username

Generate random s

Salt, m, S = gs + kv mod m

Generate random c

C = gc mod m

Calculate u = Hash(C, S) Calculate u = Hash(C, S)

Calculate g(c+up)s = (gs)c+up Calculate g(c+up)s = (gcvu)s

Pc = Hash(C, S, g(c+up)s mod m)

Verify Pc

Ps = Hash(C,Pc, g
(c+up)s mod m)

Verify Ps

Figure 1: The Secure Remote Password Protocol, as implemented in ProtonMail

relies on the difficulty of the discrete logarithm problem: given a fixed prime
number N and g, it is easy to compute gx mod N from x, but not the other
way around. Accordingly, for a password p (pre-hashed and salted, both to
make dictionary attacks slow and to ensure that there are no weaknesses due
to predictability), the server stores the verifier v ≡ gp mod N . This verifier
can be computed on the client side when setting a password, avoiding the need
for the server to see any password-equivalent data. For login, the SRP protocol
proceeds in two phases. In the first stage, the client and server generate a shared
secret, following the pattern of Diffie-Hellman. In Diffie-Hellman, both parties
generate random ephemeral public-private key pairs as a random secret a and
ga mod N . Then, they can each mix their private key with the other party’s
public key, producing a shared secret: (ga)b = gab = (gb)a mod N . SRP differs
from this by mixing the verifier and the password into the key pairs, thereby
causing a mismatch if the password and the verifier do not match.

On the server side, the generation of the ephemeral key pair proceeds nor-
mally: the private key is a randomly chosen s, and the public key is gs mod N .
However, when transmitting the public key to the client, the verifier is mixed
in, and S ≡ kv + gs mod N is sent for a random constant k (generated as a
hash of N and g). The client then calculates the actual server public key by
computing S − kgp.

On the client side, the password is mixed into the private key. Although the
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client generates a random c and sends across C ≡ gc mod N , the actual private
ephemeral key is c+ up, where u is a mixing parameter derived as a hash of C
and S. The client can only calculate this private key by knowing the password
p, while the server can calculate the public key from only the verifier as follows:

Cvu = gc(gp)u

= gcgup

= gc+up

Finally, the client and server generate a shared secret as in standard Diffie-
Hellman, finding gs(c+up) = (gs)c+up = (gc+up)s.

The second phase of SRP is the actual authentication phase, in which the
client and server prove to each other that they hold the same secret. This
only happens when the password held by the client corresponds to the verifier
held by the server. Verification is a fairly simple process – the client sends
a hash of the shared secret, the server’s semi-public ephemeral key (gs mod
N), and some public data for randomization. In response, the server sends of
hash of the shared secret, the user’s knowledge proof, and some public data for
randomization.

In the first phase, the only sensitive value sent over the network is the verifier
mixed into the server’s public ephemeral key. However, since s is uniformly ran-
dom and g is chosen as a generator modN , gs mod N is uniformly distributed
(except for 0), and therefore perfectly scrambles the verifier, rendering the mes-
sage harmless.

In the second phase, assuming the hash function used is secure (in the ran-
dom oracle model), an attacker cannot figure out anything about the hashed
data except via search over possible shared secrets. Since the shared secret is
large and randomly distributed, brute-force attacks are infeasible, and generat-
ing the shared secret, even from a known password, is assumed to be difficult
without knowledge of one of the private keys, which would take discrete loga-
rithms to find. Therefore, an attacker cannot even mount a dictionary attack
on a user’s password by observing an SRP connection.

Choosing a Modulus

SRP relies crucially upon working modulo an N that makes calculation of dis-
crete logarithms difficult. In particular, when N−1 is made up of comparatively
small factors, the Pohlig-Hellman algorithm makes it possible to break the prob-
lem down into discrete logarithm problems of difficulty proportional only to the
size of those factors. Therefore, to minimize this risk, ProtonMail uses safe
primes of the form 2p+ 1, where p is another prime number.

However, choosing a single safe prime may be insufficient. With algorithms
like the number field sieve algorithm, it is possible to do a significant amount
of precomputation on an arbitrary modulus to be able to calculate discrete
logarithms efficiently in that modulus. While the amount of work necessary is
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prohibitive for a one-off calculation, it seems within the reach of state actors to
do such a computation on a 1024-bit modulus, and there is evidence that such
a computation has already occurred [1]. At ProtonMail, we take a conservative
approach towards this threat. First, we use 2048-bit moduli, which ought to be
out of reach for even state actors for quite some time. Second, we have opted
to not use a single modulus for all users. This greatly reduces the impact of an
attack on an SRP modulus, as such an attack would only affect a small fraction
of users.

To defend against an MITM (man-in-the-middle) attacker feeding the client
a fraudulent, broken modulus, we have two layers of security. First, the mod-
ulus is included in the password hash itself, meaning that in the worst case,
the attacker would only be able to access information about a different hash
of the password than the one used to actually log in. This reduces potential
compromise to at worst a dictionary attack. Second, we send the client signed
moduli which can be verified to ensure that the modulus actually came from
ProtonMail.

Improvements over RFC 5054

A version of the SRP-6a protocol has been standardized by the IETF in RFC
5054 [9] for use in negotiating secure, authenticated TLS connections. Unfortu-
nately, the RFC seems too outdated to be acceptable for use at ProtonMail.

First and foremost, we have deep security concerns around the use of SHA-1
as a hashing algorithm. For password hashing in particular, SHA-1 is highly
problematic: In the event of a database breach or the discovery of a weakness in
the SRP protocol, attackers would primarily execute dictionary attacks, and so
modern password hashes are designed to be slow and memory hungry to impede
high-speed, highly-parallel password cracking. SHA-1 is specifically designed to
have neither of these two crucial properties. Moreover, SHA-1 is not tunable
– there is no clear way to scale up the password hashing cost as computing
power increases. In contrast, ProtonMail uses bcrypt, a time-tested, tunably
slow hashing algorithm designed for passwords.

Beyond its issues as a password hashing algorithm, SHA-1 is far too short
to be used safely in SRP. Many algorithms for computing discrete logarithms,
prototypically Pollard’s kangaroo algorithm [8], have runtimes that only depend
on the range of possible exponents, not the full size of the modulus. In the face
of those algorithms, SRP using SHA-1 has security roughly equivalent to using
a 180-bit modulus, which is well within the range of breakability.

Additionally, though the bulk of the attacks on SHA-1 are collision attacks
that have little bearing on the security of SRP, SHA-1 has recently been showing
its age, and it is difficult to be confident that SHA-1 is or will be sufficiently
secure. As such, ProtonMail uses MGF-1-SHA-512 [5, B.2.1] both to expand
the bcrypt hash to a full 2048 bits and to generate the u and k scrambling
parameters.

Second, RFC 5054 is meant as an implementation of authentication for the
TLS protocol. While it has its flaws, the more traditional certificate-based TLS
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authentication is extremely well tested, studied, supported, and updated. By
wrapping our implementation of SRP in a traditional TLS channel, we can lever-
age the immense body of work that has gone into making existing TLS solutions
secure, improve privacy by encrypting usernames, and guard against novel at-
tacks on the less well-tested SRP protocol by preventing even eavesdroppers in
the common case.

Two Factor Authentication

Two-factor authentication (2FA) can be optionally enabled for added security.
2FA is a method of confirming identity that requires not only that the user
know information (e.g. their login password), but also that the user possess a
particular physical device (ex. a phone, computer, or hardware key) configured
with their 2FA shared secret. ProtonMail implements the Time-based One-
Time Password algorithm (TOTP) [7], which computes a single use passcode
from a shared secret key and the current time measured in 30 second intervals.
A TOTP passcode is only valid for a limited time, which prevents brute-force
and replay attacks.

When 2FA is first enabled for an account, the user is given a shared secret
key that they can enter into any TOTP-enabled application or device. Examples
include the Google Authenticator, Authy, and 1Password smartphone applica-
tions, and Yubico Authenticator, which stores the shared secret on a hardware
device called a Yubikey. When a user wants to sign in to their account, the cho-
sen application will use the TOTP algorithm to provide the correct passcode
corresponding to the user’s secret key. This passcode will need to be entered
along with the correct login password in order to access the account. To pre-
vent locking users out of their accounts if they lose their 2FA device, users are
also given 16 single use recovery codes when they enable 2FA. A valid recovery
code along with the correct login password will also allow users to enter their
account, where they can disable 2FA on the lost device and re-enable it on a
different device.

Organization administrators are empowered to reset 2FA settings for non-
private member users.

Email Encryption

PGP Overview

The PGP protocol utilizes a combination of public key and symmetric cryptog-
raphy that offers two primary benefits for communications and email: confiden-
tiality, whereby only designated parties can read a particular communication,
and authenticity, whereby the recipient can verify the identity of the sender and
detect whether the communication has been tampered with in transit.

Public key cryptography utilizes a pair of keys for each party – a public key
used to encrypt messages sent to the party that can be widely disseminated, and
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a private key used to decrypt messages sent to the party that is known only to
that party. Not only should an encrypted message not reveal any information
about the message, but a public key should not reveal any information about
its associated private key. Both of these properties are achieved by using math-
ematical problems that are computationally infeasible to solve. For example,
in RSA, the default public key cryptosystem provided by PGP, the private key
(d) and the public key (exponent e and modulus n) are related such that for
all messages m, (me)d ≡ m mod n. RSA’s security relies on two properties:
that the message m cannot be derived from the encrypted message me mod n

even with knowledge of the public key, and that the private key d cannot be
derived even with knowledge of e, n, and/or m. In order to derive either of
these variables, an attacker would have to factor the public key modulus n,
the product of two large unknown primes, a problem which is believed to be
extremely computationally difficult for sufficient key length.

Unlike public key cryptography, symmetric key cryptography utilizes only
one key, which is used for both encryption and decryption of a message. Sym-
metric key algorithms tend to be much faster than public key algorithms, but
require that both sides of the communication have access to the same key. The
requirement that this secret key be securely shared between the sending and
receiving parties is the main drawback of symmetric key cryptography.

Thus, in order to take advantage of the secure key distribution of public key
cryptography and the speed of symmetric key cryptography, PGP combines a
public key algorithm with a much faster symmetric key algorithm. For example,
ProtonMail’s implementation of PGP uses the public key algorithm RSA and
the symmetric key algorithm AES-256.

Message encryption with PGP goes as follows:

1. After the sender creates a message, a random 256-bit number is generated
that will only be used during this transaction. This is called a “session
key”.

2. PGP symmetrically encrypts the message using this session key.

3. The session key is encrypted with the chosen public key algorithm for
each recipient using their public key. Because the session key is only
256 bits long, the relative slowness of the public key algorithm does not
significantly increase the overall computation time.

4. These encrypted session keys are prepended to the encrypted message and
are sent together to all desired recipients.

To read a PGP-encrypted message, the recipient will:

1. Decrypt the encrypted session key meant for them, yielding the original
session key

2. Use the session key to decrypt the encrypted message, yielding the original
message
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Session Key

PK1

Session Key

PK2

Message Data Signature

SK

Figure 2: The makeup of a PGP message with two recipients with public keys
PK1 and PK2. The session key SK is separately encrypted with the two public
keys, and the message data is symmetrically encrypted with the session key. The
signature is optional.

Because no other party has the ability to decrypt any of the encrypted
session keys, and thus the ability to decrypt the message, the message will only
be available to the sender and intended recipients.

In addition to encrypting the message, the sender can optionally choose to
provide a digital signature, which will allow the recipients to verify that the
message is indeed from the sender and has not been tampered with in transit.

To digitally sign a communication, the sender will:

1. Produce a hash of the message using a hash function that must be both
one-way (the hash value does not reveal any information about the mes-
sage) and deterministic (the function always produces the same result on
the same input)

2. Use their private key to sign this hash value using a digital signature
algorithm. This signed hash value is called the digital signature

3. Append the digital signature to the message before encryption and sending
(which will proceed as detailed previously).

In order to verify the signature, the recipient will:

1. Decrypt the message as explained previously, yielding the digital signature
and the original message

2. Use a signature verification algorithm corresponding to the signing algo-
rithm used by the sender, along with the sender’s public key, to produce
the hash value from the digital signature

3. Calculate the hash value of the decrypted message using the same hash
function as the sender.

4. Check whether the two hash values from steps 2 and 3 are equal. If they
are equal, the signature is verified.

If the signature is verified, then the recipient knows that the message was
signed with the sender’s private key and has not been changed since.
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Implementation of the OpenPGP Standard

ProtonMail implements OpenPGP [2], the most widely-supported PGP stan-
dard, using OpenPGP.js on the web client and a native code implementation
on the mobile applications and IMAP/SMTP bridge. OpenPGP.js is an open-
source Javascript library that is actively used and vetted by the security com-
munity, including two independent security audits by the German cybersecurity
firm Cure53. The native implementation uses cryptographic primitives from
OpenSSL, one of the most ubiquitous and popular implementations of TLS/SSL.
Both of these libraries provide key management functions as well as encryp-
tion, decryption, signing, and signature verification of messages/attachments.
ProtonMail’s interface to each of these functions is detailed in the following
subsections.

Key Distribution and Management

Upon creating a ProtonMail account, every user generates a RSA public key/private
key pair. These keys are generated client-side with a user ID (the user’s Pro-
tonMail email address) and a passphrase (the user’s mailbox password, known
only to the user) as inputs. The private key is symmetrically encrypted with the
mailbox password using AES-256. The public key and encrypted private key
are then stored on the ProtonMail server along with the user’s other account
information and retrieved whenever a user logs in successfully. The encrypted
private key is decrypted on successful mailbox password entry on the user’s local
device and can be used to read and sign messages during that session. Because
the private key is stored encrypted by the mailbox password, and the mailbox
password is known only to the user, ProtonMail cannot read the user’s messages
nor impersonate the user.

User accounts may have multiple email addresses associated with them, and
each address will have one or more sets of public/private keys. The primary set
is used for encryption/signing, while the secondary (usually older) sets are used
for decryption to ensure readability of older messages.

Sending Encrypted and Signed Messages and Attachments

Amessage and its attachments can be sent encrypted from a ProtonMail account
to any email address with an available corresponding PGP public key. If the
email address is associated within ProtonMail, the recipient’s public key will be
automatically retrieved. If the email address is not associated with a ProtonMail
account, the corresponding public key must be imported by the user and saved
in a contact. Message and attachment encryption in these two cases are handled
differently, as detailed below.

Internal Emails (ProtonMail to ProtonMail) In this case, messages and
attachments are encrypted and signed separately. Signing is optional for attach-
ments because it requires re-downloading the encrypted attachments from the
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server on message send, which can be slow, and signatures often go unchecked.
Sending without signing only requires the encrypted session key packets to be
downloaded and re-encrypted with the recipients’ public keys. Messages are
always signed because there is no performance penalty. Keeping messages and
attachments separate helps facilitate responsive webmail and IMAP interfaces,
as large attachments do not need to be downloaded from the server in order to
read the associated message. This also enables fast forwarding of messages, as
attachments can be copied server-side.

External Emails (ProtonMail to another PGP email client) There
are two PGP formats available for external PGP encryption – PGP/Inline and
PGP/MIME. Sending an external PGP/Inline email works exactly the same way
as internal encryption – messages and attachments are separately encrypted and
signed as detailed above. The downside to Inline PGP from the user’s perspec-
tive is that external clients often do not support HTML emails with PGP/Inline,
but they are much more suited to webmail than PGP/MIME. PGP/MIME com-
bines the message body and attachments in a multipart MIME form, and then
encrypts and signs them together. This method boasts full support for HTML
emails but can be slower if the message included large attachments, as the at-
tachment must be downloaded and the large encrypted body re-uploaded to
send.

Decryption and Signature Verification

ProtonMail can decrypt and verify internal emails (from another ProtonMail
account) as well as any other emails PGP-encrypted with the user’s public key
as long as the sender’s public key is in the user’s contacts.

Internal Emails If an email is sent from another ProtonMail account, then
the message and attachments have been encrypted separately. In this case, the
message is decrypted and verified as it is read. The attachments are decrypted
and verified only if downloaded.

External Emails If an encrypted email sent from outside ProtonMail is in the
PGP/Inline format, then decryption and verification are the same as internal
emails, with the exception that the sender’s public key may not be known to
the user. In this case, the message and attachments will be decrypted but the
signatures cannot be verified.

If the encrypted email is in the PGP/MIME format, then the messages and
attachments have been combined and encrypted as a whole. In this case, the
combined form is decrypted and the signature optionally verified immediately.

The user will be alerted to any irregularities with the signature verification.
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Password-Protected Messages

ProtonMail’s Encrypt-to-Outside feature (EO) allows a user to communicate
with someone without PGP keys outside of the ProtonMail platform in a fully
end-to-end encrypted manner. EO encryption takes place on the client device
and is available in both web and native mobile application formats. Using EO
encryption requires a shared secret (password) known to both parties commu-
nicated to eachother via other means (e.g. phone). An optional password hint
and/or expiration time for the message can also be set. By defult, all messages
expire after 28 days if an earlier expiration date is not specified.

The encryption password is used to encrypt (with AES256) both the mes-
sage itself as well as a randomly-generated token. The encrypted message, en-
crypted token, and the plaintext token are then sent to the ProtonMail server.
It’s important to note that the encryption password is never saved or sent to
ProtonMail at any time which maintains a zero-knowledge result.

The ProtonMail server then sends the designated recipient a generated email
notifying them that they have a message waiting. This generated email con-
tains a very long, unique link to access it. These links are very long and rate-
limited to prevent brute-force guessing. The notification message can be white-
labeled/customized.

Upon navigating to the unique link in a web browser the visitor is prompted
to decrypt the random token with the password. If successful, the visitor can
use the token to authenticate to the server and retrieve the message, attach-
ments, and associated metadata. Message decryption is then performed with
the password.

The authenticated visitor can also reply to the message. These replies are
encrypted with the ProtonMail user’s public key and also end-to-end encrypted.

A maximum of 5 replies can be sent per EO message. This limit is to prevent
abuse by the recipient.

Moreover, sending and replying fully support end-to-end encrypted attach-
ments.

Administration

ProtonMail for Enterprise combines maximum protection for corporate data
against unauthorized access with the tools necessary for successful organization
management and regulatory compliance.

The Organization

Each ProtonMail for Enterprise client has an organization defined within the
ProtonMail Cloud. An organization is a collection of users with at least one
administrator which share email domains, billing, and cloud resources. Organi-
zation resources, such as storage space, can be provisioned to individual users
by organization administrators. Organizations also have an associated pub-
lic/private key pair. This key pair is shared among the administrators and can
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be used to access and read mail in non-private member accounts as well as sign
organization data.

Roles

There are two possible user roles within an organization. The basic role is that
of the organization member, who can read and send email but cannot administer
the organization, assign or remove addresses, modify their storage space, etc.
The other user role is that of administrator. Administrators can add and remove
users, domains, addresses, storage space, and modify the organization’s name
and other characteristics. They have access to and can modify organization
billing and subscription information and they can also access non-private user
accounts and perform actions as the subordinate user. As administrators have
absolute power within the organization, it is recommended that administrator
accounts not be used for regular mail purposes and instead only be used for
administration.

Domains and Addresses

Domains (i.e. mycorporation.com) are added and managed by organization ad-
ministrations. Once the domain is correctly configured and verified, addresses
associated with the domain can be provisioned to members of the organiza-
tion. Users can have multiple addresses, but mail is organized separately by
address. All addresses in the ProtonMail system ignore case, hyphens, periods,
and underscores when routing mail, which reduces misrouted mail. Addition-
ally, ProtonMail-hosted addresses support ’+’-style subaddresses for routing
(e.g. mail sent to test+abc@example.com is routed to test@example.com, as is
mail sent to test+def@example.com).

User and Key Management

Administrators are empowered to create new organization members and assign
them addresses, a role, and a storage quota. Regardless of role, each user can
be either a private or non-private user. For compliance reasons, most if not all
corporate users are non-private. The difference between private and non-private
users is who has ultimate control over the user’s encryption keys. For private
users, this is the user herself. She generates her own keys, and no one but her
can read his correspondence. For non-private users, an administrator generates
the encryption keys used for the account and saves a copy for administrative
use. This allows the administrator both to read the user’s mail if necessary and
also restore account access in the event the user forgets her mailbox password.
Administrators can also reset the login passwords and 2FA information of non-
private users.
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Import/Export

Data import is achieved via a downloadable, cross-platform tool which seam-
lessly transfers data from the previous provider to ProtonMail. All mail is
encrypted within the tool before sending the encrypted payload to ProtonMail.
This ensures that the ProtonMail servers never see the unencrypted data. Ex-
port is achieved via the same tool run in reverse.

Data Retention

Data retention periods for non-private users are enforced by disabling full mes-
sage deletion for messages newer than a configured cutoff age, drafts excepted.

Email Client Compatibility

ProtonMail is compatible with existing email clients such as Thunderbird, Out-
look, and others via a client-side IMAP/SMTP bridge that facilitates all encryp-
tion and decryption operations and communicates with the ProtonMail API.

The IMAP and SMTP protocols [3][6] are the commonly implemented stan-
dard for interaction between email clients and servers. Unfortunately, few
IMAP/SMTP client implementations provide end-to-end encryption. To re-
tain compatibility with these clients while still offering end-to-end encryption,
our bridge acts as a local intermediary that encrypts emails after they leave the
client but before they leave the user’s computer.

This bridge runs on Linux, OS X, and Windows and is downloadable from
the ProtonMail website. Once installed, it acts as a proxy server for the Pro-
tonMail API. All communications between the bridge and the cloud API are
authenticated using the SRP protocol and secured using TLS/SSL. Addition-
ally, because the bridge is a static application installed locally, external mali-
cious code changes are prevented. Moreover, by keeping the decryption software
separate from the actual email client, vulnerabilities in clients cannot allow an
attacker to steal encryption keys. Using the bridge is simple and only requires
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entering “localhost” and custom port numbers as the IMAP and SMTP servers
in an existing email client.

Sending email through the IMAP/SMTP bridge is seamless from the user’s
perspective. When email is sent, the bridge reads the recipients and determines
the appropriate encryption to use (ProtonMail internal, EO/PGP if configured
in the ProtonMail contacts, or unencrypted for external recipients). If a recipi-
ent is a ProtonMail user, the recipients’ public keys are fetched using the Pro-
tonMail API and used to encrypt the message using standard PGP encryption.
EO and PGP recipients are handled similarly except that the password/keys
are retrieved and decrypted from the user’s encrypted contacts. The message is
only sent to the ProtonMail server post-encryption, which preserves end-to-end
security.

Incoming email is also handled through the bridge. When the bridge receives
a new message from the ProtonMail API, the user’s private key is used to decrypt
the message on the fly. Because the decryption only happens locally the integrity
of the end-to-end encrypted communication is maintained.

Other IMAP actions are translated to ProtonMail API commands as appro-
priate. For example, copying a message to a user-defined folder is interpreted
as labeling the message, and deleting a message from a user-defined folder is
interpreted as removing the corresponding label. Only deletions from the Trash
folder are interpreted as actual deletions.

Infrastructure

The ProtonMail server infrastructure is heavily distributed and redundant to
ensure high reliability and performance. The main parts of the system are shown
in Figure 4.
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Mail Servers

ProtonMail use MX DNS to load balance incoming SMTP traffic to multiple
mail servers. This redundant setup ensures that if a mail server is taken offline,
incoming mail will be automatically rerouted to the other servers. The MTA
used for receiving and sending emails is Postfix, which is open source, secure,
and widely used. In order to encrypt SMTP traffic, TLS 1.0 or higher and per-
fect forward secrecy using Elliptic Curve Diffie-Hellman Ephemeral (ECDHE)
key exchange are supported while vulnerable protocols such as SSL 3.0 and weak
cipher suites are disallowed to prevent downgrade attacks. To filter mail, we de-
ploy OpenDKIM (verifies and signs DKIM), OpenDMARC (verifies DMARC),
ClamAV (rejects viruses), and SpamAssassin (assigns a score to incoming email
according to how spam-like the message is). These “milters” funnel clean emails
to the inbox and spoofed or spam emails to the spam folder. Postfix passes pro-
cessed incoming mail to the application layer, which does further processing
(including custom filtering) and encrypts the email with the user’s public key.
The encrypted email is then stored and cannot be decrypted by anyone except
the recipient user.

Web Servers

ProtonMail’s web servers, powered by Apache, serve API requests originating
from the browser-based web application and the native iOS/Android mobile
apps. HSTS ensures that all traffic uses HTTPS and HPKP to prevent man-in-
the-mittle attacks. As with incoming mail, data in transit is encrypted using a
recent version of TLS with strong cipher suites – as of July 2016, these measures
earn ProtonMail domains A+ ratings on Qualys SSL Labs’ test. Our servers
run hardened versions of CentOS and are load balanced by redundant HAProxy
servers, which automatically reroute traffic if any web server goes offline. With
our own range of IPs, we ensure that all outgoing emails are sent from servers
with good IP reputation and won’t be summarily rejected by spam filters.

Database Servers

All of our critical user data resides on MySQL databases, which are widely used
and battle-tested by Internet giants like Facebook and Dropbox. While there
are newer and fancier database solutions available, none are mature or reliable
enough to meet our standards, and none can match MySQL when it comes to
existing community and support.

To improve performance, data is horizontally sharded across multiple database
servers. Each shard unit consists of a master that handles both reads and writes
and replicates its data to two slaves. The primary slave is in the same datacen-
ter as the master and is ready to take over if the master goes down, while the
secondary slave is in a separate datacenter in case of datacenter-wide failures.
Backups are regularly made for disaster recovery, including to cold storage. All
shard units are maintained and operated with identical tools so that adding
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more shards does not actually add more complexity. By knowing exactly where
each piece of data is and having full control of the replication topology, we
ensure that we can scale up without sacrificing reliability.

To maximize performance, Redis servers act as a cache layer above MySQL
for frequent reads and transient data. The Redis servers are also deployed in a
fully redundant configuration to eliminate single points of failure.

Network and Facilities

ProtonMail’s cloud infrastructure runs on a dedicated network for both security
and reliability reasons. Our network spans three datacenters in Switzerland,
two of which are ISO 27001 certified. Our datacenter providers include Deltalis
SA and Equinix (NASDAQ: EQIX). Our data storage facilities are spread out
across both Western and Eastern Switzerland for geographic diversification and
directly connected to major Internet Points of Presence (PoP) in both Zurich
and Geneva.

We use an unique mix of facilities that have a special emphasis on security
due to the special requirements of our customer base. Our primary datacenter
in Attinghausen is located in the former Swiss air force command and control
bunker under 1000 meters of solid rock and linked to the outside world through
a ultra reliable dark fiber link maintained by the Swiss Federal Railways for
signaling purposes along the Gothard tunnel. Being connected to critical Swiss
national infrastructure helps to ensure the highest possible uptime on our up-
links.

Proton Technologies AG is also a Local Internet Registry (LIR). Since 2014,
we have been a member of RIPE NCC (Réseaux IP Europens Network Coor-
dination Centre) with a dedicated allocation of IPv4 and IPv6 addresses. This
allows us to control the IP reputation of our own subnet for optimal email deliv-
erability and isolate our network infrastructure away from other entities which
may be prone to failure. This also serves to protect our network from unautho-
rized tapping or other network based attacks because we maintain full control
over our network up until the main Swiss Internet PoP in Zurich.

Denial of Service Resistance

Proton Technologies AG has in place sophisticated monitoring on all levels of
our network to detect intrusions and other malicious activity on our network.
We have also partnered with Radware (NASDAQ: RDWR) to protect our net-
work against external threats such as Distributed Denial of Service (DDoS)
attacks, in which attackers flood a network with requests, attempting to make
it unavailable to its users. Such protection is increasingly necessary because
DDoS attacks have now become the most common form of cyberattack, a trend
which is expected to continue (see Figure 5).
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Figure 5: Percentage of companies experiencing various cyberattacks [10]

Together with Radware and other network infrastructure partners, we oper-
ate a 24/7 Network Operations Center with a 24/7 Emergency Response Team
to swiftly respond to any network based attacks and ensure maximum uptime.
ProtonMail uses a DDoS protection system based off of Border Gateway Proto-
col redirection. When an attack is detected, all network traffic is immediately
diverted to dedicated scrubbing centers that remove attack traffic. During an
attack, we usually divert traffic to DE-CIX in Frankfurt because ProtonMail has
previously experienced attacks that would seriously stress the national network
capacity of Switzerland.

After the removal of attack traffic, clean traffic is delivered to our network
edge via redundant GRE tunnels [4]. Thus, attack traffic is prevented from
hitting our border routers and overwhelming their capacity. The system that has
been implemented in partnership with Radware is capable of withstanding up to
2 Tbps of attack traffic and has successfully defended against attacks reaching
up to 120 Gbps (for comparison, the largest DDoS attack ever launched was
500 Gbps). Due to the frequency with which our network sees attacks, DDoS
protection is usually maintained in an “active” state which allows our network
to automatically respond within 18 seconds of an attack with no impact to
customers.

Conclusion

As a whole, ProtonMail’s cloud based encrypted email services provide a strong
combination of security, usability, and reliability that is essential for any en-
terprise. Consistent with our company values of transparency and peer review,
most of ProtonMail’s code is open source and available for review by the se-
curity community. As part of that community, we are also actively engaged
in both public and private efforts to improve the state-of-the-art in encryp-
tion technology. Thus, specifications and implementation details discussed in
this whitepaper are always subject to change as improvements become avail-
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Figure 6: The network configuration when ProtonMail is under attack

able through continued research and development. For the most up to date
whitepaper, please contact your account manager.
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